Enhancing magnetic ordering in Cr-doped Bi2Se3 using high-TC ferrimagnetic insulator.

نویسندگان

  • Wenqing Liu
  • Liang He
  • Yongbing Xu
  • Koichi Murata
  • Mehmet C Onbasli
  • Murong Lang
  • Nick J Maltby
  • Shunpu Li
  • Xuefeng Wang
  • Caroline A Ross
  • Peter Bencok
  • Gerrit van der Laan
  • Rong Zhang
  • Kang L Wang
چکیده

We report a study of enhancing the magnetic ordering in a model magnetically doped topological insulator (TI), Bi(2-x)Cr(x)Se(3), via the proximity effect using a high-TC ferrimagnetic insulator Y(3)Fe(5)O(12). The FMI provides the TI with a source of exchange interaction yet without removing the nontrivial surface state. By performing the elemental specific X-ray magnetic circular dichroism (XMCD) measurements, we have unequivocally observed an enhanced TC of 50 K in this magnetically doped TI/FMI heterostructure. We have also found a larger (6.6 nm at 30 K) but faster decreasing (by 80% from 30 to 50 K) penetration depth compared to that of diluted ferromagnetic semiconductors (DMSs), which could indicate a novel mechanism for the interaction between FMIs and the nontrivial TIs surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field

External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure an...

متن کامل

Interface electronic structure at the topological insulator-ferrimagnetic insulator junction.

An interface electron state at the junction between a three-dimensional topological insulator film, Bi2Se3, and a ferrimagnetic insulator film, Y3Fe5O12 (YIG), was investigated by measurements of angle-resolved photoelectron spectroscopy and x-ray absorption magnetic circular dichroism. The surface state of the Bi2Se3 film was directly observed and localized 3d spin states of the Fe3+ in the YI...

متن کامل

Magnetic doping and kondo effect in bi(2)se(3) nanoribbons.

A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surface-to-volume ...

متن کامل

Atomic-level structural and chemical analysis of Cr-doped Bi2Se3 thin films

We present a study of the structure and chemical composition of the Cr-doped 3D topological insulator Bi2Se3. Single-crystalline thin films were grown by molecular beam epitaxy on Al2O3 (0001), and their structural and chemical properties determined on an atomic level by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A regular quintuple lay...

متن کامل

Quantized Hall effect and Shubnikov-de Haas oscillations in highly doped Bi2Se3: evidence for layered transport of bulk carriers.

Bi2Se3 is an important semiconductor thermoelectric material and a prototype topological insulator. Here we report observation of Shubnikov-de Hass oscillations accompanied by quantized Hall resistances (R(xy)) in highly doped n-type Bi2Se3 with bulk carrier concentrations of few 10(19) cm(-3). Measurements under tilted magnetic fields show that the magnetotransport is 2D-like, where only the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 2015